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Similarity solutions of the Euler equation in the calculus of 
variations 
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Received 15 January 1985 

Abstract. A necessary and sufficient condition for the equivalence of the conformal 
invariance of the Euler equation and the divergence invariance of the associated variational 
integral is obtained in terms of the generators of the local Lie group of transformations 
under which invariance is studied. 

1. Introduction 

In this paper we explore the connection between the divergence invariance of the 
fundamental integral in the calculus of variations and the conformal invariance of the 
corresponding Euler equation, the latter of which would give rise to similarity solutions ; 
the invariance is with respect to a one-parameter, local Lie group of transformations. 
In particular, we consider integral functionals of the form 

(1.1) 

where x E C2[ to, t J  and the Lagrange function L is four times continuously differenti- 
able in  [ t o ,  f l ]  x R 2 .  The corresponding Euler equation is 

where subscripts denote partial differentiation. We also consider a one-parameter local 
Lie group of transformations which we write in infinitesimal form as 

I =  f + E T ( f ) + O ( E ) ,  f = x + + [ ( x ,  t ) + O ( E ) .  (1.3) 
Here, E is a real parameter which varies over some open interval I containing zero, 
and r and [ are the group generators defined by 

T ( t )  = ( c 3 1 / d E ) E = o ,  ( ( 4  x) = ( d - f / d E ) , = o ,  

and o( E )  denotes terms for which o( E ) /  E + 0 as E + 0. 

only if, there exists a twice continuously differentiable function 4(  t, x )  for which 
We say that the integral functional (1.1) is divergence invariant under (1.3) if, and 

L(i , f ,d-f /dr)  d i / d t =  L( t ,x ,X)+(d /d t )4 ( f ,x )~+o(~)  (1.4) 
for all E in I.  

If 4 ~ 0 ,  then (1.1) is said to be absolutely invariant (see Logan 1977). I t  was 
proved by Rund (1972) that a necessary and sufficient condition for (1.1) to be 
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divergence invariant under (1.3) is that the Lagrange function L and the group 
generators r and 5 satisfy the invariance identity 

L,7+ L,5+ L i ( i  - X i )  + L i  = 4. (1.5) 

Here, i and i denote the total derivatives of 5 and r, i.e., i =  &+&X, i =  rf, and 
similarly for 4. 

To define invariance of a second-order differential equation we require the concept 
of the extended group which defines how derivatives transform under (1.3). It is well 
known (see, e.g., Logan 1977) that this extended transformation is given by 

d f / d l =  X + & ( ~ - X + ) + O ( E ) ,  ( 1.6) d2x/di2 = x+ ~ ( i - 2 x i - x T )  + o ( E ) ,  

coupled with (1.3). The terms 

p : =  [ - X i ,  q:= 5-2xi-x.i: (1.7) 

define the generators. The Lie derivative operator of the extended group will be denoted 
by 

2?:= ~ a / a t + 5 a / a x + p a / a X + + a / a X .  (1.8) 

A second-order differential equation 

F (  t, x, x, x) = 0 (1.9) 

is said to be conformally invariant under (1.3) if, and only if, 

Y F  = aF, (1.1.0) 

for some function a = a (  t ,  x)  (see Ames (1972) or Bluman and Cole (1974)). 
The question addressed in this paper is the relation between divergence invariance 

of a variation integral (1.1) and the conformal invariance of the Euler equation (1.2). 

2. A counterexample 

It is not difficult to construct an example to show that invariance of the Euler equation 
does not imply invariance of the corresponding integral functional. Take 

J ( x )  = (xx3+x/J;) dt, 1,: 
whose Euler equation is the nonlinear equation 

F (  1, x, X, x) := -6xXx - 2X3 + 11 J; = 0. (2.2) 

Consider the group of stretching transformations 

I = ( l + & ) t ,  2 = (1 + E ) 5 / 6 x  

with generators 

7 = t, 6 = ix.  

It is easy to see that 

Y F =  -1F 2 ,  

(2.3) 
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so that (2.2) is conformally invariant with conformal factor a = -$. However, a 
straightforward calculation shows that neither (1.4) nor (1.5) holds for any choice of 
4, and therefore the fundamental integral is not invariant. 

Two questions arise naturally. Are there supplementary conditions which will 
guarantee this implication, and is the converse implication true? In the case of the 
Emden-Fowler equation, which we write as 

F (  t ,  X, X9 X) := - t 'X - 2 tx - t2xS = 0, 

we find that both the differential equation and the corresponding integral functional 

are invariant under the group 

7=(1+e) t ,  2 = (1 - &/2)X, 

with DfeF = -IF. 

3. Conditions for invariance 

In this section we shall obtain a necessary and sufficient condition for these two types 
of invariance to be equivalent. We shall show that the conformal factor a must be 
given in terms of the group generators; the divergence term 4 plays no role. In fact, 
we shall prove the following theorem. 

Theorem. If J ( x )  is divergence invariant under the one-parameter group of transforma- 
tions (1.3), then the Euler equation is conformally invariant under (1.3) with conformal 
factor 

a=- (&+Tr) .  (3.1) 

The converse also holds. 

Prooj The proof in the forward direction involves a lengthy, although straightforward, 
calculation of DfeE, where E is the Euler expression defined by (1.2), using the invariance 
identity (1.5). The key to the converse is to consider L,, rather than the Lagrange 
function L itself. 

First, we have 

= (L,,  - Lxrr - LX,,f - LxxrX)7 + (L,, - L,,, - L,,,x - LxxxX)t 

- ( ~ x , . r + ~ x x x X +  ~ , , , ~ ) ( ~ ~ X T r ) - ~ , , ( ~ ~ ~ X T ,  -XTrr).  (3.2) 

We show that DfeE = a E  for some a. Noting that (1.5) is an identity for arbitrary 
directions x, we can differentiate (1.5) with respect to x to obtain 

L r x T +  L x x t +  L x ( 6 x  - 7, )  L x x ( k -  fTr) + T r L x  = 4,. (3.3) 

Differentiating (3.3) with respect to t ,  x, and x gives the three identities 

L , , x T + L , x r ( + L x , , ( k - X T , ) =  - [ L r x T r + L x x ( r  + L , , ( ( x - T r )  

+ L x ( 5 x r  - Trr) + L x x ( 5 r r  + x t x r  - x ~ r r ) + T r L x r  + ~ r r L x I +  4 x r  (3.4) 
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Finally, differentiation of (1.5) with respect to x gives 

Ll,7+ L,,5 = -[L,5, - L x x ( i  - X7,) + - at,,) + LXTfI+ 4 r x  + x 4 x x .  (3.7) 

Substituting (3.4) through (3.7) into (3.2) gives, after considerable reduction, 

2'E = -(ex + T,)E.  (3.8) 

To prove the converse, we notice (and this is the key to the argument) that (l.lO), 
and hence (3.8), is an identity in the independent variables t, x, x, and x. By the 
calculation, it is seen that x occurs linearly in (3.8), and therefore its coefficient is 
zero. That is, 

L,,, 7 + L,,,t + L,,,( 8 - XT,) + L,,(25, - 7,) = 0. (3.9) 

But this is precisely equation (3.6) which is a twice differentiated form (with respect 
to x) of the invariance identity (1.5). Therefore, we integrate (3.9) twice, partially with 
respect to x to get 

L,T + L,& + L,( 4 - XT,) + LT, = a ( x ,  t ) + b (  x, t )x (3.10) 

for some functions a ( x ,  t )  and b ( x ,  t ) .  I t  remains to show that the right-hand side of 
(3.10) is a total derivative. 

Equation (3.10) can be differentiated to obtain the identities (3.4) through (3.7) 
with 4,,, A,, and 4,! replaced by a,, b,, and b,, respectively. Substituting those identities 
into the expression 2 E  given by (3.2), we obtain 

L ~ E = - ( & + T , ) E + c I , - ~ , .  

Hence, a, = b,, and therefore there exists a function IC, ( t ,  x )  for which 

a + bx = 6. 
Therefore the theorem is proved. 

This explains the examples in § 2. The Emden-Fowler equation satisfies the 
conformality condition 

U = - (7, + 5, ) = - 2.  

However, for (2.11, ( 2 . 2 )  we have CY = -l ,  whereas - ( T ,  +&) = -?, 

4. Generalisation to vector functions 

When x = (x ' ,  . . . , x " )  and the transformation is given by 

i= t + & 7 ( t ) + o ( & )  

.Tk = X k  + E& t ,  x )  + o( E ) ,  k =  1,. . . , n (4.1) 
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then the invariance identity (1 .5)  becomes 

L,T+ Lxktk+ L x k ( i k - x k ~ f ) + L ~ ,  = d d ( f ,  x ) /d t ,  

where the summation convention is assumed. 
The Euler expressions are 

Ek := LXL - L 1. - L h x 1  x x  - Lx~xlX' 

for k = 1 ,  . . . , n. In this case, we say that the system of Euler equations Ek = 0, k = 
1 , .  . . , n is conformally invariant under (4.1) if, and only if, 

T E k  = a El, k =  1 , .  . . , n 
for some functions a ;  = a;(  t, x ) ,  k, 1 = 1 ,  . . . , n. Here, 

~ = ~ a a / a t + ~ ~ a ~ a x ' + p ' a ~ a X ; - ' + q , a ~ a j r '  

q l = . l - 2 x 1  . I  p '  = i' - x l T ,  and 7, - x 7,p 

with 

In this case, the following theorem holds; the proof is the same. 

Theorem. A necessary and  sufficient condition that the divergence invariance of the 
integral functional J ( x ' ,  . . . , x" )  and the conformal invariance of the Euler equations 
be equivalent is that the conformal factors CY: are given by 

CY: = - ( a g l / a x k  + T&) 

where 8: is the Kronecker delta. 
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